
Retrospective review – VMS file
system internals

1 (7)

Eduardo CASAIS TECHNICAL PAPER 2021-05-15

RETROSPECTIVE REVIEW – VMS FILE SYSTEM
INTERNALS

1. INTRODUCTION

Sometimes, one’s fancy is caught by the notion of learning in some detail the
architecture and implementation of a piece of software lying outside one’s usual
domain of expertise or area of activity. So with file management systems – an
operating system component that is relied upon constantly, but whose innards few
people get acquainted with, and even fewer get to design. Curiosity may lead one to
consider not just current, cutting-edge software (which certainly brings the advantage
of learning about a system one may well have to use professionally), but rather an
old, even obsolete one (with the perspective of learning how certain problems were
addressed when technology did not afford solutions commonly used nowadays).

VMS makes for an interesting case: it marks the transition from mainframes, with
magnetic tapes as the main storage medium, to time-sharing minicomputers based
on disk drives. Its heyday corresponds to a rapid evolution of hard disks in terms of
technology, performance and capacity. Simultaneously, storage services offered by
operating systems were increasingly abstracting away low-level hardware
characteristics so that programmers no longer had to care about the peculiarities of
blocks and cylinders to organize their files.

Of course, many software engineers probably read descriptions of the original
Unix file system, but the VMS file system is much less known, despite VMS having

© 2021 Eduardo Casais, areppim AG, Köniz, Switzerland

Retrospective review – VMS file
system internals

2 (7)

Eduardo CASAIS TECHNICAL PAPER 2021-05-15

been dominant for a decade. Since both operating systems were developed at about
the same time on the same machines, a comparison may be intriguing. Let us then
see whether the book “VMS File System Internals” by Kirby McCoy enlightens us
about what engineers at DEC wrought.

2. CONTENTS

This book deals with Files-11/ODS-2, the file management component of VAX/VMS
machines from Digital Equipment Corporation (DEC).

After a general presentation of the system, a series of chapters considers each of
its aspects in detail.

 Chapter 2 describes the persistent data structures defining the file system:
boot block, home block, storage bitmap, file descriptors (covering attributes
such as identity, space allocation table, access control information, creation
date), directory hierarchy, etc.

 Chapter 3 explains how disks are formatted, mounted, and dismounted.
VMS optimizes I/O by caching disk blocks.

 Chapter 4 shows how interrelated pools of disk blocks, distinguished by
type (file headers, data, directory entries, allocation bitmap, quotas, etc) are
structured and organized, and how buffers therein are allocated and freed.

 Chapter 5 covers the fundamental operations to access, create, modify, and
delete files, as well as to manage directories, disk space and quotas.
Emphasis is put on the integrity checks performed by each operation, and
how “windows” serve to access file extent tables efficiently.

 Chapter 6 delves into lower-level I/O routines: how I/O requests are
formatted, device drivers invoked, and results returned to applications.

 Chapter 7 examines file access serialization, including the various kinds of
locks, locking levels, and the schemes relied upon to avoid deadlock.

 The final chapter explains how distributed locks synchronize accesses to
files in a VAXCluster environment, how caches in participating computers
are kept consistent, and how space allocation is handled.

Importantly, the book does not deal with the Record Management Services
(RMS), the module used by VMS programmers to manipulate files as persistent high-
level data structures such as indexed-sequential storage.

3. PRESENTATION AND STYLE

The style is dry and the explanations terse, with comparatively few examples for the
mass of information contained in the book – more akin to a reference manual.
Correspondingly, the presentation strives for exhaustiveness: every field of every
header, every option of every flag, every check by every function is listed and
described. There are slip-ups though. Thus, the Unit Control Block (UCB), which is at
the core of the VMS I/O subsystem, is repeatedly referred to throughout the book,

© 2021 Eduardo Casais, areppim AG, Köniz, Switzerland

Retrospective review – VMS file
system internals

3 (7)

Eduardo CASAIS TECHNICAL PAPER 2021-05-15

and several of its fields appear in a number of relations and validations – but the UCB
itself is never described. One must look up its structure in the book “VMS Internals
and Data Structures”.

One becomes rapidly accustomed to DEC conventions – such as calling “word”
what is a 16 bit datum in a 32 bit architecture, or the little-endian representation of
data. On the other hand, one faces a thicket of mentions of routines and system calls
that are obviously relevant to the system programmer who has the complete VMS
reference documentation at hand, but only tend to slow down reading for anybody
else. For example:

The volume allocation lock is initially acquired in protected write mode by the
MOUNT routine GET_VOLUME_LOCK (in CLUSTRMNT).

A few VMS concepts should be looked up beforehand to ease comprehension,
but additional background is definitely required for chapter 6, otherwise one gets
quickly overwhelmed by the minutiae of context switching and parameter passing
discussed therein. Readers are therefore well-advised to have “Computer
Programming and Architecture: the VAX-11” by Levy and Eckhouse at hand (or some
equivalent work) for a refresher on P0 and P1 process space, priority levels, the
difference between kernel and executive modes, the VAX process status word, and
interrupt handlers. In addition, its section “Input and Output Processing” in chapter 9
is a lucid exposition of the flow of control amongst components handling I/O requests;
a very welcome and necessary overview with the right degree of detail to understand
what takes place at that level before embarking on chapter 6 of “VMS File System
Internals”.

The complexity of the layer handling low-level I/O arises from a series of
optimizations with the aim of running device drivers and associated routines at as low
a priority as possible, so as to avoid a monopolization of CPU and channels that
would exclude other urgent file requests and possibly miss interrupts. “Computer
Programming and Architecture: the VAX-11” explains the matter clearly. Experienced
OS developers are more able than other software engineers to appreciate all the
details about partitioning I/O requests into smaller steps, copying context back and
forth, raising flags, switching priority levels, and queuing event handlers.

What will be more familiar to all programmers working in production
environments is the overhead due to bookkeeping. VMS is a multi-user OS, and
consequently Files-11 must record information about quota allocations for each user,
validate limits at each file access, and keep quota utilization up-to-date after each
operation – all of which complicate Files-11 data structures and algorithms further.

Numerous forward references make the book more intelligible on a second
reading. Thus, windows and the structure of Window Control Blocks are concisely
described in section 3.1.3.4, but their role and what “window turns” entail are only
explained in section 5.4.9. Similarly, the text makes frequent references to locks and
value blocks of various kinds, but all these are discussed systematically only in
chapter 7. Initially, the most comprehensible parts are found in chapter 2 (because
everything else depends on it) and chapter 8 (because it builds upon everything
described previously).

© 2021 Eduardo Casais, areppim AG, Köniz, Switzerland

Retrospective review – VMS file
system internals

4 (7)

Eduardo CASAIS TECHNICAL PAPER 2021-05-15

4. TYPOS

Published after DEC had passed its apex and before it entered its precipitous
decline, the book only saw a revised, and alas untraceable, edition 15 years later.
There was indeed a need to improve often awkward sentences and to correct quite a
number of regrettable typos. Thus, section 2.3.3.2 states that “ the ident area is
usually truncated in extension headers” – when “omitted” is meant. Many more
examples of such clumsy expressions can be found throughout the book. Further, in
section 6.5.2 a sentence states “(refer to section 6.5.2)”, while on page 382 the list of
functions requiring a File Control Block to be marked stale includes “deaccessing a
file (DEACCESS)” twice. The explanations in table 2-10 mix up the notations for
before-image and after-image. Table 2-17 incorrectly states that “126 bad block
entries may be recorded” – the actual number is 125. As yet a further example, in
section 5.4.8.1 we find the following paragraph:

If the deaccess function sees that the bad block bit is set in the file header, it sets
the FH2$V_BADBLOCK bit in the file header. Likewise, INIT_FCB2, which
initializes the FCB according to the given file header, sets the FCB$V_BADBLK bit
if the FH2$V_BADBLOCK bit is set. Setting FH2$V_BADBLOCK, in turn, causes the
DELETE_FILE routine to send the file to the bad block scanner for deletion.

It obviously is erroneous, all the more so since FH2$V_BADBLOCK does not exist
– FCH$V_BADBLOCK instead does. The paragraph should be rephrased as follows:

If the deaccess function sees that the bad block bit is set in the file control block,
it sets the FCH$V_BADBLOCK bit in the file header. Likewise, INIT_FCB2, which
initializes the FCB according to the given file header, sets the FCB$V_BADBLK bit
if the FCH$V_BADBLOCK bit is set. Setting FCH$V_BADBLOCK, in turn, causes the
DELETE_FILE routine to send the file to the bad block scanner for deletion.

More baffling are the mistakes in some explanatory diagrams.
F11$s<10><10><10> in figure 7-8 should obviously be F11$s<10><0><0> just like
in other related diagrams. The running example in section 8.5.1 has been seriously
garbled. Pictures 8-13 and 8-14 are all right, but figure 8-16 should take the place of
8-15, followed by what is 8-17, then what is 8-15 (with BAHT instead of BAUT), then a
figure showing BAHT and RUPEE with mode CR granted and KYAT with mode PW
granted, then finally what is 8-18 replacing the completely irrelevant figure 8-19.

Poor editing also caused a number of severe omissions in the description of file
headers in chapter 2.

First of all, field FH2$W_CHECKSUM, which closes file headers, appears neither in
figure 2-2, nor in table 2-2. Second, references to fields FAT$V_NOSPAN and
FAT$W_VERSIONS in section 2.4.1 (explaining the format of directory records) lead
nowhere. These are absent from the companion book “VMS Internals and Data
Structures” too. An earlier internal DEC paper entitled “Files-11 On-Disk Structure
Specification”, and which obviously served as basis for chapter 2 of “VMS File
System Internals”, reveals that these two variables are actually sub-fields of
FH2$W_RECATTR, along with a number of other crucial attributes defining the
organization of the file (sequential, direct, relative, indexed-sequential), its record
structure (fixed, variable, variable with a fixed portion, stream), record properties

© 2021 Eduardo Casais, areppim AG, Köniz, Switzerland

Retrospective review – VMS file
system internals

5 (7)

Eduardo CASAIS TECHNICAL PAPER 2021-05-15

(length, end of record mark, size of record buckets), and various other file
characteristics (such as position of EOF mark or the number of buffers to allocate).
The entire chapter 6 of “Files-11 On-Disk Structure Specification” should have been
included in “VMS File System Internals” but is completely missing. The definition of
DIR$B_FLAGS in directory records is incomplete as well. The aforementioned
internal paper lists a possible entry type other than file ids (DIR$C_FID): symbolic
links (DIR$C_LINKNAME) – though at the time the paper was written these were not
yet implemented, even if the option bits were already reserved.

Overall, the book looks like a rush job that would have greatly benefited from
additional proofreading and substantial editorial re-work.

5. COVERAGE

The lack of context makes reading “VMS File System Internals” a hard slough. There
are topics introductions and overview diagrams – but they look more like reminders
for developers already familiar with VMS and eager to plunge into the gory details,
than didactic material for outsiders. There are exceptions – notably the section
devoted to windows and the chapter on VAXCluster.

Paradoxically, sometimes the book does not provide enough details. A case in
point are cache header fields F11BC$L_POOLAVAIL (defined as “number of
available buffers in each of the buffer pools”) and F11BC$W_POOLCNT (defined as
“count of buffers in each of the buffer pools”). Anybody instinctively assuming that the
number of “available” buffers is a subset of the buffer “count” immediately bumps into
the uncomfortable fact that the latter counters are 16 bit variables, while the former
are 32 bit variables. There are no explanations about what values those counters are
initialized with, when exactly they are incremented, and when they are decremented.
There is just a notice that they assume the same value when the file system is
quiescent, and another about a very specific circumstance for updating
F11BC$L_POOLAVAIL. Their distinct roles derive from the fact that buffer “credits”
are granted and buffers moved from system-wide pools to process-specific pools
prior to launching I/O operations, but the information is insufficient to ascertain their
precise semantics.

Consider also the case of the index file header. There is an alternate (or
“backup”) index file header pointed at by fields containing the block number where to
find it. On the other hand, readers must figure out by themselves that the primary
index file header is the first one to appear right after the index file bitmap, according
to the formula in 2.5.1.7 applied to file ids in table 2-14. As a further example, several
checksum fields (such as HM2$W_CHECKSUM1) are said to be “computed by the
same sort of algorithm as the header checksum” – but that algorithm is never
elucidated beyond a statement that it is a “simple additive checksum”; it is present,
as an assembly code snippet, in “Files-11 On-Disk Structure Specification”.

The text is interspersed with remarks giving the rationale for specific features, but
an overarching exposition of the design decisions for Files-11 is missing. One learns
why the index file is placed in the middle of the disk by default, or why space
allocation is distributed amongst members of a VAXCluster in the way it is, but there

© 2021 Eduardo Casais, areppim AG, Köniz, Switzerland

Retrospective review – VMS file
system internals

6 (7)

Eduardo CASAIS TECHNICAL PAPER 2021-05-15

is no discussion of what requirements and constraints led to the final architecture of
the file system and its VAXCluster extension. Nor are explanations given about such
details as why files are extended, by default, by a number of blocks (i.e. 5) that is not
a multiple of the default extent size (i.e. 3 blocks). All that is unsurprising: the book
was not conceived as a detailed case study for software engineers in general, but as
an exhaustive reference document specially for VMS system programmers.

6. EVALUATION

As such, it maintains only a tenuous relevance. VAX computers are museum pieces,
while DEC/Alpha and Intel/Itanium systems are inexorably fading away (they also use
an updated version of Files-11, i.e. ODS-5). As for the port of VMS to the Intel/X86-
64 architecture, it entailed a complete overhaul of the file system, whose new design
has little if anything in common with the original Files-11.

The book remains a somewhat interesting addition to the library of people and
organizations involved in teaching or in R&D on file management systems, if only for
historical reasons. The question is whether it retains its value as a case study for the
developer who wants to know “how a file management system works exactly”.

The obsolescence of Files-11 is not an appropriate argument contra. VAX/VMS
was immensely popular and influential, and one learns by studying such systems.
Linear data structures to organize space allocation and in-place update schemes
may be superannuated, but it is intriguing to realize that they were designed to
handle 2 TiB disks – which must have seemed remarkably future-proof in the late
1970s – and also that one of the possible volume configurations exhibits some faint
traits reminiscent of a time when magnetic tapes were used as on-line storage.
Handling bad blocks is nowadays taken care of in disk controllers, by proprietary
schemes not documented publicly. Files-11 dates from an era when this was an OS
task, and the book duly documents how information about bad blocks is recorded on
disk and what happens when a device driver encounters a bad block. In this respect,
reading about an outdated file system brings some advantages.

The real issue is that the book is laborious to work through, because of its
structure, because of the intended readership, and not least because of its many,
irritating defects. Attentive perusal and re-reading, flipping back and forth to find the
definitions of densely interconnected data structures, and checking supplementary
documentation are required to gain an understanding of the matter – a cursory
reading is simply pointless. One is left with an appreciation for the complexity of a
technically interesting VMS subsystem – and plenty of unanswered questions.

All things considered, I cannot recommend that software engineers looking for a
serious, in-depth treatment of a file management system specifically hunt for the
original "VMS File System Internals”. The later, revised (and confidential) edition
about the OpenVMS file system would in principle be a better reference, but appears
to have gone out of print soon after its first publication. They should therefore avoid
embarking on a frustrating search for a remaining copy and, if absolutely necessary,
ought to resort instead to the services of inter-library loans. They may however

© 2021 Eduardo Casais, areppim AG, Köniz, Switzerland

Retrospective review – VMS file
system internals

7 (7)

Eduardo CASAIS TECHNICAL PAPER 2021-05-15

consider acquiring either book when stumbling upon a really cheap second-hand
copy – and then get hold of the earlier DEC Files-11 specification.

7. BIBLIOGRAPHY

[1] Andrew C. Goldenstein: Files-11 On-Disk Structure Specification, Digital
Equipment Corporation, 1985-01-11.
https://web-docs.gsi.de/~kraemer/COLLECTION/VMS/ods2.txt

[2] Lawrence J. Kenah, Ruth E. Goldenberg, Simon F. Bate: VAX/VMS Internals and
Data Structures version 4.4, Digital Press, 1988, ISBN 1-55558-008-4.

[3] Henry M. Levy, Richard H. Eckhouse: Computer Programming and Architecture
– the VAX-11, Digital Press, 1980, ISBN 0-932376-07-X.

[4] Kirby McCoy: VMS File System Internals, Digital Press, 1990, ISBN 1-55558-
056-4.

[5] Brian Schenkenberger: OpenVMS File System Internals, Butterworth-
Heinemann, 2005, ISBN 978-1555582692.

REFERENCE

Eduardo Casais: Retrospective review – VMS file system internals, technical paper,
areppim AG, Köniz, Switzerland, 2021-05-15, 7 pages.

© 2021 Eduardo Casais, areppim AG, Köniz, Switzerland. All rights reserved.

ABOUT THE AUTHOR

Early in his career, Eduardo Casais programmed DBMS-based MIS software on
VAX/VMS. Later he worked on object-oriented software development methods,
formal design techniques, Internet service platforms, mobile protocols, and Web
development.

ABOUT AREPPIM AG

areppim AG focuses on the display of quantitative information for the WWW. The site
http:// stats .areppim.com publishes data on a wide range of topics, presented as
intuitive, content-rich charts and often accompanied by concise analyses.

CONTACT

e-mail: info@areppim.com

© 2021 Eduardo Casais, areppim AG, Köniz, Switzerland

mailto:info@areppim.com
http://www.areppim.com/
http://www.areppim.com/
http://www.areppim.com/
https://web-docs.gsi.de/~kraemer/COLLECTION/VMS/ods2.txt

